Here is a list of vector spaces we have gone over in class:

• For $n \in \mathbb{Z}^+$, \mathbb{R}^n is the *n* dimensional Euclidean space.

$$\mathbb{R}^{n} = \left\{ \left(a_{1}, a_{2}, a_{3}, \dots, a_{n}\right) \mid a_{i} \in \mathbb{R}, 1 \leq i \leq n \right\}$$

- $F(\mathbb{R})$ is the set of all functions $f : \mathbb{R} \to \mathbb{R}$
- $P(\mathbb{R})$ is the set of all polynomials (with no restriction on the degree) with real coefficients
- $P_n(\mathbb{R})$ is the set of all polynomials of degree $\leq n$ with real coefficients
- $C(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous} \}$
- $C^1(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable everywhere and } f'(x) \in C(\mathbb{R})\}$. The elements of $C^1(\mathbb{R})$ are called continuously differentiable functions.
- $C^2(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is twice differentiable and } f''(x) \in C(\mathbb{R}) \}.$
- $C^{\infty}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ has derivatives of all orders} \}$
- F([a, b]) is the set of all functions $f : [a, b] \to \mathbb{R}$
- C([a,b]) is the set of all continuous functions $f : [a,b] \to \mathbb{R}$
- $M_{m \times n}(\mathbb{R})$ is the set of all matrices of size $m \times n$. This set is also denoted by $\mathbb{R}^{m \times n}$.

Comments:

- $P(\mathbb{R}), P_n(\mathbb{R}), C(\mathbb{R}), C^1(\mathbb{R}), C^2(\mathbb{R}), C^{\infty}(\mathbb{R})$ are all subspaces of $F(\mathbb{R})$.
- For each n, the vector space $P_n(\mathbb{R})$ is a subspace of $C^1(\mathbb{R})$.
- $C^1(\mathbb{R})$ is a subspace of $C(\mathbb{R})$ because differentiability implies continuity.
- $C^2(\mathbb{R})$ is a subspace of $C(\mathbb{R})$.
- C([a, b]) is a subspace of F([a, b]).
- $P(\mathbb{R}) \subset C^2(\mathbb{R}) \subset C^1(\mathbb{R}) \subset C(\mathbb{R}).$